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Abstrakt:

Sérový oblouk je jednou z nejčastěǰśıch př́ıčin požár̊u vyvolaných elektřinou. V

současnosti se prevenci požár̊u, zlepšováńım elektroinstalace a použitých př́ıstroj̊u

zab́ıvá cela řada ĺıdi. Táto práce zkoumá sériový oblouk v domácnostech. V

této práce jsou představené r̊uzné př́ıstupy k výzkumu charakteristik sériového

oblouku. Analýza proudu pomoćı směrodatné odchylky ukázala nadějné výsledky.

Na základě těchto výsledk̊u autor navrhuje prozkoumat metodu detekce, která

použ́ıvá rozd́ıly směrodatné odchylky vysokofrekvenčńı složky proudového signálu.

Kromě toho v této práce jsou porovnaný metody detekce sériového oblouk. Přesto,

že existuje spolehlivá metoda, autor usuzuje, že výzkum mel by pokračovat kv̊uli

zmı́něným možným problémům existuj́ıćıch metod.

Kĺıčová slova:

Seriový oblouk, Detekce Obloukové poruchy, př́ıstroje pro detekci poruchového

elektrického oblouku, AFDD, AFCI, Směrodatna odchylka, Fourierová Transfor-

mace

Abstract:

A series arc fault is a most frequent electrical cause of fires. Currently, many in

fire safety field are concerned with deployment, developing and improvement of

Arc Fault Circuit Interrupters. This thesis investigates series arc characteristics

in the presence of household loads. The thesis presents different approaches to

the investigation of a series arc’s features. The standard deviation analysis of

high frequency component of a current showed promising results, which may be

a good indicator for the detection of a series arc. The author proposes a novel

method based on the results, which utilises differences of a standard deviation of

the high frequency component of a current signal. Moreover, several methods of

arc fault detection are described and compared. Nevertheless, a reliable detection

algorithm exists, the author concludes that the research should continue due to

expressed concerns.

Keywords:

Series arc, Arc Fault Detection, AFDD, Arc Fault Circuit Interrupter, AFCI,

Standard Deviation, Fourier Transform
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1. Introduction

1.1 Motivation and thesis objectives

According to [1] arcing fault cause more than 30000 home fires a year in the

USA and many times more worldwide. Peoples safety is always a major concern;

thus the fire statistics triggered the research of arc fault circuit interrupters (AF-

CI) decades ago. However, due to nature of arc faults the existing devices are not

100 percent reliable. Hence, the investigation into series arc feature continues.

The ultimate goal indeed is to find a reliable indicator for fault detection.

The thesis has multiple objectives. The first one is to make a set of mea-

surements using setup made at CTU. The second goal is to describe well-known

characteristics of a series arc and conduct an investigation into series arcs’ fea-

tures using obtained data. The third aim is to describe and compare several arc

fault detection methods.

1.2 Thesis outline

The thesis consists of six chapters and a conclusion. The first one describes

the thesis, its motivation and objectives. The second chapter briefly introduces

Fourier series and explains the chosen approach to spectral analysis. The third

chapter introduces a series arc. Moreover, it describes well-known characteristics

of a series arc both in time-domain and frequency domain. The fourth chapter

outlines author’s investigation into series arc characteristics. The fifth chapter

describes the setup made at the faculty of electrical engineering at CTU, its

functionality as well as hardware. The sixth chapter describes several arc fault

detection algorithms and compares them.
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2. A brief introduction to the

harmonic analysis

The author assumes that the reader is aware of the Fourier Series and Fourier

transform. Nonetheless, not many engineers understand how Fourier transform

algorithms work and what problems they have. Hence, this chapter explains to the

reader, how the harmonic analysis was done and why particular approaches the

author chose. Furthermore, the last section of this chapter provides information

about the estimation of the fundamental frequency of a periodic signal.

2.1 Fourier series

Fourier series is broadly known as a possible representation of a periodic

function via an infinite sum of sines and cosines. This form of a function helps

to understand the behaviour and features of the signal source. The harmonic

analysis is widely used across all fields of engineering like control of a dynamic

system, signal processing and others. The most known form of the Fourier series

is:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt) (2.1)

where: ω = 2πf = 2π/T, f is the fundamental ferquency (Hz) ans T is a period,

nω is the nth harmonic,

an, bn are the Fourier coeficients of nth harmonic,

a0/2 is also known as DC component of signal.

The defenitions of the Fouurier coefficients are:

a0 =
2

T

∫ T/2

−T/2

f(t)dt (2.2)

an =
2

T

∫ T/2

−T/2

f(t) cos(nωt)dt (2.3)

bn =
2

T

∫ T/2

−T/2

f(t) sin(nωt)dt (2.4)

The from of the Fourier series shown above is rarely used in electrical power

engineering field because, fundamental signals in the electric grid are sinusoidal

or at least should be in normal opration. Therefore another representation of the

13



Fourier series form is more practical in that case. The cosine can be substituted

by a sine with a phase shift, hence the Fourier series will be:

f(t) =
a0

2
+
∞∑
n=1

cn sin(nωt+ ϕ) (2.5)

where cn =
√
a2n + b2n and ϕ = arctan an/bn

This form of the Fourier series shows which oscillations are dominant.

2.2 Fourier transform performance comparison

There are different algorithms for calculation of Fourier series coefficients.

One of the most used is Fast Fourier Transform or FFT. This algorithm is com-

monly used in signal processing. Nevertheless, the author should be careful with

FT algorithms because the precision of FFT might not give precision that some

methods require. Therefore, the author compared his implementation of sine-

cosine transformation and SciPy FFT algorithm in Python [2]. Let assume the

measurement of the signal on the figure below with fundamental frequency 50 Hz,

which has first, fifth, seventh, eleventh and fifteenth harmonic with amplitude {1,

0.2, 0.3, 0.5, 0.1} respectively. After that analysed signal should be represented

by 15 harmonics. The signal will be measured with finite sample rate (sample

0.00 0.02 0.04 0.06 0.08 0.10
t (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 
(-)

 

Analyzed signal

Figure 2.1: The signal for analysis

rate is the number of samples per period). Reasons for low sample rate will be

given later, but the author is going to use relatively low sample rate probably

100 or 200 samples per period.
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Figure 2.2: Comparison of FFT and sine-cosine approaches for calculation of
Fourier’s coefficients

There is no doubt that FFT is less precise than a numerical integration of

interpolated data. Evidently, the sine-cosine transform shows more robustness

with decreasing sample rate compared to FFT, which certainly faster but with

low sample rate, is less precise.

2.3 Statistical method of frequency estimation

The previous section proves the superior precision of the author’s method

of calculation of coefficients, which uses interpolation and sine-cosine transform,

to FFT. Although, this method does require information about fundamental fre-

quency. Indeed, in real power system frequency is not exactly 50 Hz. Hence, for

accurate computation of the Fourier’s coefficients, the period of a signal should

be known.

For frequency estimation, the author is going to use the statistical method, which

was proven to handle well even a signal with low signal-to-noise ratio in [8] and [9]

. The idea behind this method is quite simple. First of all, mean values for dif-

ferent lengths of a period, in other words for different numbers of samples per

period, are calculated.

x̄(n) =
1

n

j+n∑
i=j

xi, j = 1, 2, ..., k (2.6)

where k is the size of the mean values set. Secondly, standard deviations of sets

of acquired mean values are computed.

σ(n) =

√√√√1

k

k∑
i=1

(x̄i(n)− ¯̄x(n))2 (2.7)
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Mention, that equation 2.10 is a definition of a function and n ∈ Z>0, where n

is number of samples per period. The third step of this algorithm is a minimiza-

tion of the function σ(n). However, this function is not defined for non-integer

numbers; therefore an approximation by parabola around minimum point is used.

This approximation requires at least three points, hence from pairs of (n, σ(n))

three pairs are chosen, the smallest and one from each side of the smallest one.

Then the equation of the parabola can be derived, by calculating its coefficients.

This system of equations in matrix form is: σ1

σ2

σ3

 =

n
2
1 n1 1

n2
2 n2 1

n2
3 n3 1

×
 a

b

c

 (2.8)

The fourth step is a calculation of parabola’s vertex position, which is a commonly

known formula:

xvertex = − b

2a
(2.9)

Solving the system of equations:

nvertex =
n3(σ

2
1 − σ2

2) + n1(σ
2
2 − σ2

3) + n2(σ
2
3 − σ2

1)

2(n3(σ1 − σ2) + n1(σ2 − σ3) + n2(σ3 − σ1))
(2.10)

Finally, using nvertex calculated in the previous step, a period of a signal can be

obtained:

T =
nvertex

fsampling

(2.11)
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3. Theoretical description of the

Series Arc faults

This chapter introduces a series arc fault. Moreover, the chapter describes series

arc’s well-known characteristics and provides some explanations with examples.

3.1 A series arc fault

Series arc can be interpreted as an unintentional discharge on the suface of

a conductor. Series arc fault occurs in the path of a circuit in series with a load.

Mostly, an interruption of insulation or flawed mechanical contact causes this

type of fault. Series arc fault represents an extra load, in a series with existing,

in the circuit. Consequently, the current, flowing into the faulted branch, is close

to standard operating current. Therefore, conventional protection devices cannot

detect series arc faults.

3.2 Characteristics in time domain

The arc itself is a very complicated phenomenon. Therefore, for developing

arc fault detection algorithm is better to understand how its presence affects

current in the circuit. AC arc was studied a lot, and its features are well known.

Major influential factors are voltage, gap distance, electrode surface and line

impedance [3].

The voltage applied across electrodes controls arcing, so when AC voltage crosses

zero, the arc extinguishes. After restoring a critical value of voltage, arc reignites.

Figure 3.1 shows the arc voltage waveform. Between those two processes is a

current gap, which duration depends mostly on the distance between electrodes

and state of the plasma. Longer the distance gap, a higher voltage is needed

to initiate arcing. Plasma between electrodes affects the insulating properties of

the fluid between electrodes, and it leads to a smaller voltage that can cause a

breakdown. Arc extinguishing and re-ignition cause a current edge. Current raise

ration depends on applied voltage needed for a breakdown, on the load, and on

the circuit parameters. Figure below 3.2 shows these edges, that are often called

shoulders.

It is obvious that current gaps decrease RMS value of the signal. Also, time

of arc re-ignition varies due to stochastic nature of the phenomenon.

17



0.00 0.02 0.04 0.06 0.08 0.10
time (s)

Vo
lta

ge
 (V

)
arc voltage

Figure 3.1: Arc voltage
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Figure 3.2: Current waveform without/with series arc

3.3 Characteristics in frequency domain

Several papers outline the importance of higher harmonics assessment in arc

fault detection algorithm for reliable disclosure of failure [3,4]. Re-ignition of cur-

rent, coming in hand with a current edge, generates high-frequency noise. As a

result, signals spectrum significantly changes. There are different opinions which

part of the spectrum suits better for detection algorithm. Carlos E. Restrepo in

his paper suggests using RF component for AFDD [4]. Other researchers focus

on frequencies in the range of 2 to 5 kHz [3]. Nevertheless, the idea behind those

approaches is noise generated during arcing, which elevates higher harmonics.

18



The change in spectrum causes the decrease in amplitude of fundamental har-

monic. Figure 3.3 shows current signals from figure 3.2 in frequency domain,

obtained by using Fast Fourier Transform (FFT). High-frequency component is

displayed on figure 3.4. The high-frequency component of the signal with arcing

vastly distinguishes from the normal condition. Arc re-ignition, apparently, caus-

es the peaks.

The characteristics outline features of arc presence in the circuit. The elevation

of third harmonics (150 Hz) amplitude is noticeable, overall spectrum elevation

up to 2.5 kHz is sharp and increase in higher frequency component is perceptible

too. All that phenomena could be good and reliable indicators of an arc fault

in the circuit. Unfortunately, harmonics of those frequencies are produced by

different loads, for example, converters produce 3, 5 and 7 with high amplitude,

there is the difference between them. First of all, the arc is a stochastic process,

on the contrary power electronic devices are not. Therefore, it should be taken

into account, during the development of AFDD. Otherwise, that kind of loads

could cause undesired tripping of protection device.

102 103 104

Frequency (Hz)

80

60

40

20

0

20

Am
pl

itu
de

 (d
B)

without arc
with arc

Figure 3.3: Spectra of current signals

3.4 Influence of capacitance and inductance

The signals that have been analyzed in the previous section were obtained

from the circuit with a space heater, which is a resistive load. However, the

majority of loads are not. The devices with a high inductance can significantly

change the shape of a current. Hence, it could decrease a probability of detection
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Figure 3.4: High-frequency components (higher than 50th harmonic) of currents

of an arc fault [5]. Loads with high inductance are frequently present in the

residential sector, such as vacuum cleaners, basically all loads with electric drives

and many others. Inductance in the circuit causes a phase shift in the current.

As mentioned previously, arc in an AC circuit extinguishes due to current zero

every half of a period. However, an inductance could cause a significant phase

shift, so when current would cross zero voltage might be already high enough

to prevent arc extinction. Apparently, it eliminates one of the main features of

an arc - current shoulders. Moreover, inductance’s impedance is much higher

at high frequencies so that the circuit will behave like an analogue filter. The

tests conducted in [5] showed an only minor influence of high capacitance loads

on the current signal. Although a combination of inductance and capacitance

could significantly change the spectrum of a current signal because RLC circuit

behaves like a lowpass filter (capacitance is in parallel to the resistance and the

inductance). The bode plot demonstrates that 3.5.
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4. An investigation into series arc

characteristics

This chapter describes the author’s investigation into series arc’s characteristics.

Firstly, the author focuses on a phase angle of a current signal with a series arc.

Secondly, the high frequency component of a current signal is analysed with differ-

ent approaches. Thirdly, the noise throughout the whole spectrum is investigated.

4.1 A shift of a phase angle of the current in the

circuit with a series arc

4.1.1 How does appear a shift of a phase angle

The series arcing is a stochastic process during which many electrical pa-

rameters of an arc vary. That imply changes of an arc’s resistance in the time

domain. This variation hypothetically causes a change in a phase angle of a cur-

rent signal in a circuit with arcing. For better understanding what happens, let

first assume a simple circuit with a resistor and an inductance. This example

does not approximate the behaviour of a circuit with a series arc, nevertheless

gives an understanding how the resistance’s value affects an RL circuit. Input

voltage will be common European 230 Volt RMS with frequency 50Hz. Following

equations describe such circuit:

Vin = L
diout
dt

+ Vout (4.1)

where iout is the current through the resistor

Vin = L
diout
dt

+ Riout (4.2)

From this equation the transfer function of the circuit can be obtained:

iout
Vin

=
1

Ls+ R
(4.3)

Now applying input signal on that system, we get iout or the current through the

resistor. For the circuit with inductance of 9 mH and resistance of 5 Ohm, output

current wavefrom is shown in the Figure 4.1 This change in the phase angle can

be visualized by drawing impedance in the complex plane4.2. The Current lag

depends onR/L ration; we can see it by plotting output voltage of the same circuit
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Figure 4.2: Impedance of RL circuit in the compex plane

with 10 Ohm resistor and compare it to the previous case. Hypothetically, in the

circuit with a series arc resistance constantly changes, hence the phase angle as

well. It is similar to constant switching between every possible phase angle. The

following section will show that it may be the case. However, the R/L ration in

a circuit can change during normal operating conditions for example change of

the temperature of a load can cause variation in electrical parameters.

4.1.2 Experimental verification

By using Fourier transform described in chapter 2, from acquired data for the

circuit with the power drill as a load phase angles were extracted. The figure 4.4

shows calculated phase angles for different cycles of the signals. It is clear that in

case of arcing phase angle of the current had been changing from cycle to cycle.

However, the phase angle in the case without the presence of a series arc had

been changing too. As mentioned previously, it could have happened because of

numerical errors or change in load’s electrical parameters. From figure 4.5 we can

derive similar conclusion as from the previous.

However, a variation of a phase angle does not affirm that in the circuit is a
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Figure 4.5: Phase angles of current with thyristor controlled load with/without
arcing

series arc; it only says that there is a change in R/L ratio. Obviously, it does not

specify the cause of the variation. Phase angles of the current obtained from the
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circuit with a power drill without arcing, are displayed on the figure 4.6. In the

of this record, the power drill starts, and it causes variation in the phase angle.

It proves that not only an arc can cause a shift of a phase angle.
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Figure 4.6: Phase angles of the current with a power drill without arcing

4.1.3 The Accuracy of a phase angle estimation

Essentially, the accuracy of such calculation depends on the precision of

Fourier coefficients estimation. As was mentioned previously, the period for com-

putation of that coefficients, i.e. fundamental frequency is crucial. Therefore the

author tried to establish what imprecision of the fundamental frequency value

can be tolerated. For the same data as in the previous section, the changes of

the phase angle for different fundamental frequencies were calculated. The fun-

damental frequency was computed by using the statistical method described in

chapter 2. Figures 4.7, 4.8, 4.9, 4.10 prove that calculation of a fundamental

frequency is necessary for correct estimation of a phase angle. Also, they show

that even a small deviation from true value causes a significant error.

4.2 High frequency component of arc current

4.2.1 Variability of the high frequency component of an

arc current

The high frequency or hereafter iHF components is a very known feature of

a series arc. In this section, the author investigates the features of that compo-

nents. First of all, fundamental frequencies of the analysed signal should be taken

into account. One of the significant characteristics of data is a standard devia-

tion. It shows how far data lays from the mean, in other words, variability in the
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Figure 4.7: Phase angles of current with thyristor controlled load without arcing
calculated for differen frequencies
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Figure 4.9: Phase angles of power drill’s current without arcing

examined sample. Apparently, for a pure sinusoidal signal, it will be RMS value.

For comparison of Standard deviation values of different signals is helpful to do

normalisation, so they can be compared in the same framework without losing

information. The author and the supervisor agreed that normalisation by RMS

value division is a viable approach. Moreover, in that case, normalised sigma or
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Figure 4.10: Phase angles of power drill’s current with arcing

Standard deviation will be a dimensionless quantity.

For the signals analysed in the previous section were also acquired high frequency

components of the current signals. The fundamental frequencies were estimated,

and standard deviations were calculated for the closest integer number of samples

of the real value of the signals periods. Figures 4.11 and 4.13 show characteristics

of the signals without arcing. It is obvious that in those data is some variability

and naturally differences of standard deviation show changes in that variability.

Apparently, the main concern, in this case, is a source of the variability. Com-

paring these figures with figures of the signals with arcing 4.12, 4.14, it becomes

obvious that in case of the presence of a series arc the rate of change in variability

is larger. Furthermore, it seems to be more random. For instance, in the figure

4.11b peaks can be referred to switching of thyristors. Also, the change shown in

the figure 4.13b can be explained by the presence of noise. Consequently, from

that observation, the hypothesis can be derived that unfrequent changes in the

variability of examined samples probably is an indicator of the presence of a series

arc.
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Figure 4.11: iHF of a thyristor controlled load without arcing
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Figure 4.12: iHF of a thyristor controlled load with arcing
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Figure 4.13: iHF of the power drill without arcing
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Figure 4.14: iHF of the power drill with arcing

4.2.2 Integration of high frequency component

As mentioned previously, arcing is a stochastic phenomenon thus the ener-

gy consumed by a circuit with a series arc indeed is volatile. However, energy

analysis requires more instruments rather than current measurement. Conse-

quently, the measurement of energy should be substituted by current assessment

in a way that it will convey the information about energy. Furthermore, power

is a product of impedance times current squared, and energy is an integral of
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power. Apparently, the assessment of energy is reasonably replaceable by anal-

ysis of the integrated squared current signal. However, in that case, a piece of

information about energy will be lost. Although that seems to matter in fact

is irrelevant. Apparently, significant variation in impedance will affect current

hence current signal assessment regarding changes does not require impedance

value. The author assumed that at normal operation an integral of the current

squared would be smooth and probably almost linear. Here is why. Let assume

a periodic function - f(t) that represents a current signal. For such function is

true:

f(t) = f(t+ T) (4.4)

then f 2(t) is also a periodic function

(f(t))2 = (f(t+ T))2 (4.5)

any periodic function can be approximated by Fourier series

F(f 2(t)) =
a0

2
+
∞∑
k=1

ak sin(kx) + ibk cos(kx) (4.6)

coeficient a0 is positive because (−n)2 = n2. Integral of f 2(t) is:∫
f 2(t)dt =

∫
F(f 2(t))dt (4.7)

∫
F(f 2(t))dt =

a0

2
t+

∞∑
k=1

−ak

k
cos(kt) +

ibk

k
sin(kt) (4.8)

From the equation, 4.8 is consequent that the function probably looks close

to a straight line. However, it is more convenient to assess a periodic signal using

standard deviation; thus a DC component of the squared current signal should

be subtracted and in the result will be a periodic function if there is no arcing

in an analysed circuit. To that point, this approach of analysis was aimed at the

current signal; however, the author is going to assess high frequency component,

because everything above is valid for that. Furthermore, a change in a current

signal is sharper in the high frequency component when an arcing occurred.

Figures 4.16, 4.15 show results of analysis using the approach described above.

Indeed, smoothness of integral in the case without arcing is confirmed comparing

to signal with arcing, as the author assumed. Nonetheless, from standard devia-

tion is hard to understand whether a series arc was in the circuit during record.

To conclude, this approach does not convey more information about arcing in a

circuit than standard deviation analysis described in the previous section.
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Figure 4.15:
∫
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Figure 4.16: SD differences of
∫
iHFdt of the bulb’s current

4.3 Fundamental harmonic and noise

The feature of a series arc to produce a broadband noise was investigated a

lot. However, many approaches have time-consuming operations. On the con-

trary, faster algorithms, for instance, FFT, are not precise as was discussed in

chapter 2. Hence, the author examined slightly different approach, which can give

precision and does not require many calculations. The concept is similar to THD

(Total Harmonic Distortion). Although, the author modified that to attempt

to eliminate excessive operations without losing information about the signal.

The steps are simple. Firstly, using method described in chapter 2 estimate fun-

damental frequency. Secondly, calculate Fourier coefficients of the fundamental

harmonic. Thirdly, compute RMS of the examined current signal. Finally, calcu-

late a ratio of RMS of the fundamental harmonic to the RMS of the raw signal.

Let us examine that with real data.

From figures 4.17 and 4.18 a conclusion can be derived that a change in

RMS50 to RMS ratio could mean a change in load conditions or an arcing in a

circuit. The small values of the ratio corresponding to the no-load operation.
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Figure 4.17: Drill’s current without arcing

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

nperiod(-)

R
M
S
50
/R
M
S

(a) RMS50 to RMS ratio

0 200 400 600 800 1000

-0.4

-0.2

0.0

0.2

0.4

0.6

nperiod(-)

di
ff
(R
M
S
50
/R
M
S
)

(b) Differences of RMS50 to RMS ratio

Figure 4.18: Drill’s current with arcing

Furthermore, a change in the ratio higher than 0.4 seems to be an indicator of

switching. However, these observations should be proven on a much high data

set. The author observed on acquired data that RMS50 to RMS ratio higher than

0.2 and lower than 0.6 most likely correlate with an arcing condition. Figure 4.19

supports author’s conclusions. The arc voltage lower than 0.02 is a short-circuited

arc and arc voltage 0.2 is open circuit. There are certain outliers; however, the

pattern is clear.

Figures 4.20, 4.21 and 4.22 show the result obained for current signal of a

LED in the same fashion as for drills’ current signals above.
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Figure 4.19: RMS50 to RMS ratio with coresponding RMS of arc voltage
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Figure 4.20: LED’s current without arcing
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Figure 4.21: LED’s current with arcing
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Figure 4.22: RMS50 to RMS ratio with coresponding RMS of arc voltage

34



5. Measurement setup for series

arc faults

This chapter describes the setup made at the Faculty of Electrical engineering at

CTU. Furthermore, the electrical scheme of the setup is provided and used filters

are brifly described.

5.1 The description of the setup’s functionality

The setup made at the faculty of electrical engineering at CTU for arc faults

measurements uses arc generator. It is one of the two options how to create

arcing in a circuit according to IEC standard [7]. The block scheme of the setup

is shown in the figure 5.1. It explains from a high-level perspective what the

setup can provide. The first block from the left is a transformer which converts

the current signal into the voltage signal, which is gained after that and goes

to the oscilloscope. That is a raw current signal. This signal additionally goes

through two analogue filters. The first one is a second order lowpass filter, which’s

output is gained and connected to the oscilloscope. The second is a second order

highpass filter, which’s output is also gained, after that goes through an envelope

detector and eventually to the oscilloscope input. This signal shows the envelope

of the high frequency component of the current in the circuit. Furthermore, the

arc’s voltage is measured. The output of a transformer gained and connected to

the input of the oscilloscope.

I U
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G

G1

I_load

U_arc U2

U_arc

Scope

highpass

lowpass

demodulator

G

I_Raw

I_lowpass

U_arc
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Figure 5.1: The block scheme of the setup
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5.2 Detailed description of the setup

Figure 5.2 shows the setup scheme. The subscribed arrows are oscilloscope

chanels. Transistor amplifiers are used to gain the signals. Two arrows mean an

arc generator, which can be short circuit with the switch connected in parallel.

Figure 5.3 demonstrates the highpass filter part of the setup with transistor

amplifiers resistances taken into consideration. This filter consists of two stages

in series, which are essentially first order highpass filters. Apparently, the order

of such filter is defined by a number of cascaded RC stages. The only difference

between used highpass and lowpass filters are the places of resistors (R1, R2) and

capacitance (C1, C2); they are switched in places.For the better understanding of

the filter’s behaviour, let us examine the filter, using real values of capacitors and

resistors. The Bode plot 5.4 shows the gain of the filter for different frequencies.

In the similar manner the lowpass filter behaviour can be described 5.5.
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Figure 5.5: Bode plot of the lowpass filter
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6. Nowadays methods of arc fault

detection and its comparison

In this chapter, several methods of arc fault detection are described. Besides,

the author proposes a novel approach to detection of a series arc. Moreover, the

chapter presents a comparison of those algorithms.

6.1 AFDD by OEZ

The figure 6.1 shows the block diagram of AFDD made by OEZ company [15].

The device consists of two current sensors, an analogue circuit, a control unit and

a switching mechanism, which able to disconnect both wires phase and neutral.

The signals are measured on the phase conductor using two sensors. The first

one is a detector of the fundamental frequency signal. The second one measures

high-frequency component within 22-24 MHz band. Those two signals go through

the analogue circuit which preprocesses signals which are assessed by the control

unit. In the analogue circuit, the first signal is rectified and gained. The second

one is an indicator of the power of high frequency component (RSSI). The series

arc fault detection algorithm is based on an assessment of those two signals. The

whole process is visualized in the figure 6.2. The derivative of RSSI signal is used

to calculate the reference signal. The system indicates a presence of an arc in

case of fulfilment of the conditions: the fundamental signal is crosing zero, the

reference signal is larger than limit value G4 and value of RSSI is at least equal

to G2. In case, there is nontypical RSSI signal for a series arc i.e. RSSI changes

during high values of current signal, the fault integrator will be reseted.

Figure 6.1: Block diagram [15]
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Figure 6.2: Detection algorithm visualized [15]

6.2 Arc fault detection method using low fre-

quency harmonic current analysis

This chapter briefly describes a series arc detection method based on low

frequency harmonic assessment and presents the description of required hard-

ware. [16] This method analyses low frequency spectrum of a current signal.

Furthermore, the time domain analysis of a current signal is utilised in that

method. Spectrum analysis and time domain signal assessment are used to de-

termine whether an arcing occurred. The method uses one of the high-resolution

algorithms for spectral analysis; the Chirp-Z transform is a preferable choice.

The hardware is trivial; the figure 6.3 shows the block diagram of required hard-

ware. This method needs a current transducer, which measures the current signal

of a protected AC circuit. The signal from the transducer goes to the signal condi-

tioning unit. It consists of two stages an anti-aliasing filter and a signal amplifier.

The output of the conditioning unit is connected to the sample and hold unit,

which is connected to an analogue-digital converter. The inventors claim that 10-

12 kHz sampling frequency will give the desired precision. The converted signal

is analysed in a processing unit, which decides whether it should send a command

to the tripping circuit.

The detection algorithm uses several indicators to evaluate a current signal.
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Figure 6.3: Block diagram of the hardware

The flow chart of the method is shown in the figure 6.4. After obtaining the

number of samples that corresponds to the analysed window, indicators are cal-

culated. The computed values are compared to the thresholds. In case differences

between actual values and thresholds are within predefined limits. A conclusion

would be that in a circuit is no arcing and algorithm proceeds with updating

thresholds. If one of the indicators is outside of the limits, it means that there

is a possibility of arcing in the circuit or there is a change in the load. In that

case, the second group of indicators is compared to the threshold values. If the

result of this step is positive, the second group of indicators is within limits; a

conclusion is that there is no arc, and thresholds will be updated. Otherwise, the

arc condition is presumed, and threshold values are maintained.

Figure 6.4: Flowchart of the algorithm

The indicators used in the algorithm were derived from analysis of low fre-

quency spectrum [16]. According to the inventors of [16], the first group of the

indicators could be switched with the second group. The main difference between

those two groups is one uses time-domain analysis, and another uses frequency

domain analysis. One of the indicators is a difference between RMS values of ob-

servation windows. The second is differences between samples of two subsequent

short-time windows and can be calculated using formula 6.1.

DCW =
1

N

N∑
i=1

I1 i − I2 i (6.1)
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The third indicator DFS 6.4 assesses a change in low frequency spectra of two

following observation windows.

DFS =
1

N

N∑
i=1

Fi 1 − Fi 2 (6.2)

where Fi 1 is an amplitude of ith harmonic of the previous observation window.

The forth indicator DHFS evaluates the difference between the maximum

values of the low frequency spectrum of consecutive observation widows [16]; it

is defined as follows.

DHFS = HFS1 −HFSi2 (6.3)

where HFS is a maximum amplitude of the low frequncy harmonic, which is an

integer multiple of the fundamental.

On the contrary, the fifth indcator asesses interharmonic oscilations (nonin-

teger multiles of the fundamental frequency); The NFS can be calculated using

folowing equation:

NFS =
FS

N
(6.4)

where FS sum of the low frequency interharmonic amplitudes and N is a the

number of those frequecies.

6.3 A novel approach (Future work)

This section introduces a novel approach for arc fault detection. Nevertheless,

an invention of a new method of AFD is out of the scope of the thesis; the author

decided to propose an approach, which is based on arc’s features discussed in

chapter 4. There is a need to disclaim that everything below is just a discussion

of a possible detection method. Moreover, this section should be interpreted as

a proposition of future work at the department of electrical power engineering at

CTU.

The author observed that some of the features of a current signal with arcing,

which were investigated in chapter 4 might be useful in the detection of a series

arc. As discussed previously, the differences of a standard deviation of a high

frequency component of a current signal might be a good indicator of arcing in a

circuit. Therefore, the author examined that hypothesis, whether high differences

of sigma correlate with arcing. The figure 6.5 shows that a dependance between

differences of SD and RMS of arc’s voltage. Arc’s voltage around zero volts

corresponds to a short-circuited arc and around 0.2 volts to an open-circuit.
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That is clear that in case of arcing the values of diff(σiHF
) are higher. There

is definitely a pattern, which, however, should be proven on a much bigger data

set. Furthermore, there are exceptions that contradict author’s hypothesis, some

of high values of diff(σiHF
) could occur with a short-circuited arc 6.5b. These

outliers are probably caused by switching. Therefore, another indicator should

be utilised to eliminate false tripping of an AFDD; the RMS50 to RMS value may

be a good solution.
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Figure 6.5: Differences of standard deviation of high frquency component of a
drill’s current

However, the author does not go beyond proposition of a new method, since

it is a not a goal of the thesis. Hopefully, the proposed approach will be in-

vestigated further at the department of electrical power engineering at CTU. A

lot of engineering work should be done to prove the feasibility of that approach.

First of all, the thresholds should be established with the respect of possible load

conditions. The thresholds could be dynamically updated or static. Also, the

method should be examined with very different loads. However, the author on

purpose experimented with drill’s current because it is one of the hardest loads

for arc fault detection, due to drill’s behaviour during acceleration. The obtained

result looks promising. Although, it does not prove this approach is viable.

6.4 Comparison of AFD methodes

Unfortunately, it is impossible to compare these three methods of arc fault de-

tection directly using real data or connecting to the setup. Therefore, the author

will examine hereafter the differences in the detection approaches. Furthermore,

the author will attempt to establish, under which conditions the methods could

possible not detect or falsely detect a series arc.

The detection approach used by OEZ company seems to be an industry stan-

dard. Moreover, it is the only one of compared methods, which is on the market.
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However, the author sees one major flaw of that algorithm; it depends on noise in

22-24 MHz band. In case there will be anything that produces such frequencies

it might mask a series arc fault.

On the contrary, the algorithm described in 6.2 uses low frequency spectrum

for detection of the fault. Moreover, there is other difference this method utilises

Fourier transform. Furthermore, this approach uses time-domain analysis as well

as frequency domain.

The proposed method 6.3, on the other hand, uses the whole spectrum for

detection. The first indicator (differences of a standard deviation of a current

high frequency component) uses only high frequency component. The second

utilises the whole spectrum, by comparing fundamental harmonic to the RMS

of the signal. This approach in some sense closer to the method described in

6.2 because it uses both time-domain and frequency-domain analysis. However,

not explicitly but rather indirectly by comparing RMS50 to RMS of a signal.

Nonetheless, it distinguishes this approach from the one used by OEZ, because

it still requires computation of Fourier coefficients.

Let us compare more systematically. In the table 6.1 Method 1 is the approach

used by OEZ, method 2 is the approach described in 6.2, and method 3 is the

proposed one.

Method 1 Method 2 Method 3
On the market? Yes No No

Uses HF component? Yes No Yes
Uses LF component? No Yes Yes

Uses specific frequeny band? Yes No No
Uses Fourier Transform? No Yes Yes
Time-domain Analisys Yes Yes Yes

Frequency-domain analysis No Yes Yes

Table 6.1: Differences in appproaches

From table 6.1 is clear that the Method 1 is the only that essentially uses only

one indicator for detection, comparing to the other two. Furthermore, it does not

utilise frequency-domain analysis. From that a conclusion can be derived, that

even it is a reliable method, it does not have redundancy, which may be not the

best for detecting such a problematic fault as the series arc. However, it has to

be mentioned that in virtually infinite possible combinations of household loads

might exist a combination that could mask a series arc in the way that any arc

fault detection algorithm will not be able to detect the fault.

44



7. Conclusion

The thesis aimed to investigate the problematics of series arc faults detection

in households. The first part, i.e. chapters 2 and 3 of the thesis focuses on the

theoretical background of the topic. The mathematical tools necessary for the

understanding of this work are explained. Moreover, the author outlines well-

known characteristics of a series arc fault.

The other goal of the thesis was to conduct experiments using setup mad

at CTU. The chapter 5 describes the setup functionality and hardware. The

obtained data was later utilised to conduct an investigation, which is described

in the chapter 4. The chosen approaches were not used so far or at least not

widely known and not present in the popular literature on that topic.

The third objective of the thesis was a description of several algorithms of

AFD and its comparison. Chapter 6 briefly outlines several AFD methods and

compares them. A conclusion of the chapter 6 is, besides the effort to find a

reliable approach was tremendous, the goal is still not achieved. Also, the author

proposes future direction of the research of AFD methods at the department of

electrical power engineering at CTU.

The author concludes that even though the AFD method used by OEZ com-

pany is reliable 6.1 there is room for improvement. The research should continue,

finding new indicators of series arc fault may enhance AFD. The main concern

stays yet that there is a possibility of masking of a series arc fault by loads in the

household. The author assumes, having a redundant algorithm may be a better

solution. The meaning of the redundant algorithm is, in this case, it has to utilise

not only one indicator and to use the whole frequency spectrum.
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